ar X iv : 1 70 1 . 03 62 9 v 1 [ m at h . A P ] 1 3 Ja n 20 17 NONDEGENERACY OF HALF - HARMONIC MAPS FROM R INTO S 1

نویسنده

  • YOUQUAN ZHENG
چکیده

We prove that the standard half-harmonic map U : R → S defined by x → ( x−1 x2+1 −2x x2+1 ) is nondegenerate in the sense that all bounded solutions of the linearized half-harmonic map equation are linear combinations of three functions corresponding to rigid motions (dilation, translation and rotation) of U .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 6 . 01 70 v 3 [ m at h . Q A ] 1 9 Ja n 20 09 WEIGHT MULTIPLICITY POLYNOMIALS OF MULTI - VARIABLE WEYL MODULES

This paper is based on the observation that dimension of weight spaces of multi-variable Weyl modules depends polynomially on the highest weight (Conjecture 1). We support this conjecture by various explicit answers for up to three variable cases and discuss the underlying combinatorics.

متن کامل

ar X iv : h ep - p h / 03 01 12 9 v 1 1 7 Ja n 20 03 NUCLEON STRANGENESS IN DISPERSION THEORY

Dispersion relations provide a powerful tool to describe the low-energy structure of hadrons. We review the status of the strange vector form factors of the nucleon in dispersion theory. We also comment on open questions and the relation to chiral perturbation theory.

متن کامل

ar X iv : m at h / 02 01 07 7 v 3 [ m at h . G N ] 1 6 Ja n 20 03 A family of pseudo metrics on B 3 and its application

We define a family of pseudo metrics on B and study elementary properties of the associated metric spaces. As an application we prove that, for any a > 0 and for any countable-to-one function f from (S, dE) to [0, a], the set NMnf = {x ∈ S 2 | ∃y ∈ S such that f(x)− f(y) > ndE(x, y)} is uncountable for all n ∈ N, where dE is the standard Euclidean metric on S = { (x, y, z) ∈ R | x + y + z = 1 }

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017